Publications

Peer Reviewed

2023

Becker J. S.; DeLang M. N.; Chang K.-L.; Serre M. L.; Cooper O. R.; Wang H.; Schultz M. G.; Schröder S.; Lu X.; Zhang L.; Deushi M.; Josse B.; Keller C.A.; Lamarque J.F.; Lin M.; Liu J.; Marécal V.; Strode S.A.; Sudo K.; Tilmes S.; Zhang L.; Brauer M.; West J.J.:
Using Regionalized Air Quality Model Performance and Bayesian Maximum Entropy data fusion to map global surface ozone concentration
Elementa: Science of the Anthropocene (2023) 11 (1): 00025, October 2023

Lessig C.; Luise I.; Gong B.; Langguth M.; Stadtler S.; Schultz M. G.:
AtmoRep: A stochastic model of atmosphere dynamics using large scale representation learning
arxiv: Atmospheric and Oceanic Physics 2308.13280, September 2023

Leufen L.H.; Kleinert F.; Schultz M.G.:
O3ResNet: A Deep Learning–Based Forecast System to Predict Local Ground-Level Daily Maximum 8-Hour Average Ozone in Rural and Suburban Environments
Artificial Intelligence for the Earth Systems, Volume 2, Issue 3, 12. July 2023

Patnala, A.; Stadtler, S.; Schultz, M. G.; Gall, J.:
Generating Views Using Atmospheric Correction for Contrastive Self-Supervised Learning of Multispectral Images
IEEE geoscience and remote sensing letters 20(2502305), 1 – 5 (2023), May 2023

2022

Gong, B.; Langguth, M.; Ji, Y.; Mozaffari, A.; Stadtler, S.; Mache, K.; Schultz, M. G.:
Temperature forecasting by deep learning methods
Geoscientific model development 15(23), 8931 – 8956 (2022), Dec 2022

Kleinert, F.; Leufen, L. H.; Lupascu, A.; Butler, T.; Schultz, M. G.:
Representing chemical history in ozone time-series predictions – a model experiment study building on the MLAir (v1.5) deep learning framework
Geoscientific model development 15(23), 8913 – 8930 (2022), special issue: “Benchmark datasets and machine learning algorithms for Earth system science data”, Oct 2022

Mozaffari, A.; Selke, N.; Schultz, M. G.:
Advancing caching and automation with FDO
Research ideas and outcomes 8, e94856 (2022), Oct 2022

Leufen, L. H.; Kleinert, F.; Schultz, M. G.:
Exploring decomposition of temporal patterns to facilitate learning of neural networks for ground-level daily maximum 8-hour average ozone prediction
Environmental Data Science Volume 1, 2022, e10, Jul 2022

Betancourt, C.; Stomberg, T. T.; Edrich, A.-K.; Patnala, A.; Schultz, M. G.; Roscher, R.; Kowalski, J.; Stadtler, S.:
Global, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties
Geoscientific model development 15(11), 4331 – 4354 (2022), Jun 2022

Wittenburg, P.; Hardisty, A.; Mozaffari, A.; Peer, L.; Skvortsov, N. A.; Spinuso, A.; Zhao, Z.:
Editors’ Note: Special Issue on Canonical Workflow Frameworks for Research
Data Intelligence (2022) 4 (2): 149-154, Apr 2022

Schröder, S.; Epp, E.; Mozaffari, A.; Romberg, M.; Selke, N.; Schultz, M. G.:
Enabling Canonical Analysis Workflows Documented Data Harmonization on Global Air Quality Data
Data Intelligence (2022) 4 (2): 259–270, Apr 2022

Mozaffari, A.; Langguth, M.; Gong, B.; Ahring, J.; Campos, A. R.; Nieters, P.; Escobar, O. J. C.; Wittenbrink, M.; Baumann, P.; Schultz, M. G.:
HPC-oriented Canonical Workflows for Machine Learning Applications in Climate and Weather Prediction
Data Intelligence (2022) 4 (2): 271-285, Apr 2022

Wittenburg, P.; Hardisty, A.; Franc, Y. L.; Mozaffari, A.; Peer, L.; Skvortsov, N. A.; Zhao, Z.; Spinuso, A.:
Canonical Workflows to Make Data FAIR
Data Intelligence (2022) 4 (2): 286-305, Apr 2022

Stadtler, S.; Betancourt, C.; Roscher, R.:
Explainable Machine Learning Reveals Capabilities, Redundancy, and Limitations of a Geospatial Air Quality Benchmark Dataset
Machine Learning and Knowledge Extraction. 2022; 4(1):150-171, Feb 2022

Schultz, M. G.; Kleinert, F.; Leufen, L.H.; Betancourt, C.; Schröder, S.; Gong, B.; Stadtler, S.; Langguth, M.; Mozaffari, A.:
Artificial intelligence for air quality
The project repository journal 12(1), 70 – 73 (2022), Jan 2022

2021

Chang, K.-L.; Schultz, M. G.; Lan, X.; McClure-Begley, A.; Petropavlovskikh, I.; Xu, X.; Ziemke, J. R.:
Trend detection of atmospheric time series
Earth Science Informatics, Jun 2021

Betancourt, C.; Hagemeier, B.; Schröder, S.; Schultz, M. G.:
Context aware benchmarking and tuning of a TByte-scale air quality database and web service
Elementa: Science of the Anthropocene (2021) 9 (1): 00035., Dec 2021

Betancourt, C.; Stomberg, T.; Stadtler, S.; Roscher, R.; Schultz, M. G.:
AQ-Bench: A Benchmark Dataset for Machine Learning on Global Air Quality Metrics,
Earth Syst. Sci. Data, 13, 3013–3033, Jun 2021

Schultz, M. G.; Betancourt, C.; Gong, B.; Kleinert, F.; Langguth, M.; Leufen, L.H.; Mozaffari, A.; Stadtler, S.: 
Can deep learning beat numerical weather prediction?
Philosophical Transactions of the Royal Society, Series A, 20200097, Apr 2021

Leufen, L.; Kleinert, F.; Schultz, M. G.:
MLAir (v1.0) – a tool to enable fast and flexible machine learning on air data time series
Geoscientific model development 14(3), 1553 – 1574, Mar 2021

DeLang, M. N.; Becker, J. S.; Chang, K.-L.; Serre, M. L.; Cooper, O. R.; Schultz, M. G.; Schröder, S.; Lu, X.; Zhang, L.; Deushi, M.; Josse, B.; Keller, C. A.; Lamarque, J.-F.; Lin, M.; Liu, J.; Marécal, V.; Strode, S. A.; Sudo, K.; Tilmes, S.; Zhang, L.; Cleland, S. E.; Collins, E. L.; Brauer, M.; West, J. J.:
Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017
Environmental science & technology 55(8), 4389 – 4398 (2021), Mar 2021

Kleinert, F.; Leufen, L.H.; Schultz, M. G.:
IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany
Geoscientific Model Development 14, 1–25, Jan 2021

2020

Cooper, O. R.; Schultz, M. G.; Schröder, S.; Chang, K.-L.; Gaudel, A.; Benítez, G. C.; Cuevas, E.; Fröhlich, M.; Galbally, I. E.; Molloy, S.; Kubistin, D.; Lu, X.; McClure-Begley, A.; Nédélec, P.; O’Brien, J.; Oltmans, S. J.; Petropavlovskikh, I.; Ries, L.; Senik, I.; Sjöberg, K.; Solberg, S.; Spain, G. T.; Spangl, W.; Steinbacher, M.; Tarasick, D.; Thouret, V.; Xu, X.:
Multi-decadal surface ozone trends at globally distributed remote locations
Elementa: Science of the Anthropocene (2020) 8: 23. , Jun 2020

2019

Kaffashzadeh, N.; Kleinert, F.; Schultz, M. G.:
A New Tool for Automated Quality Control of Environmental Data in Open Web Services
Preprint, Jul 2019

2017

Schultz M. G. and 96 co-authors:
Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations.
Elementa: Science of the Anthropocene., 5: 58, 2017, Oct 2017

Conference Contributions

2023

Schröder S.; Selke N.; Schultz M.G.:
The TOAR data infrastructure: A generalised database infrastructure for environmental time series
EGU23, Pico session, Vienna, Austria, 24 April 2023 – 28 April 2023 (EGU23-1848)

Lessig C.; Luise l.; Schultz M.G.:
AtmoRep: Large Scale Representation Learning for Atmospheric Data
EGU23, Poster, Vienna, Austria, 24 April 2023 – 28 April 2023 (EGU23-3117)

Kreshpa E.; Schröder S.; Selke N.; Schultz M.G:
An Automated Data Ingestion Workflow for the TOAR Database
EGU23, Pico session, Vienna, Austria, 24 April 2023 – 28 April 2023 (EGU23-7455)

Wing Yi Li C.; Sofiev M.; Timmermans R.; Kranenburg R.; Pfister G; Kumar R; Deroubaix A.; Huneeus N; Opazo M; Caballero T.; Mo D; Zhang X.; Leufen L.H.; Kleinert F.; Schultz M. G.; Granier C.; Basart S.; Salvi O; Caillard B.; Brasseur G.:
Introduction to the AQ-WATCH multi-model air quality forecast system
EGU23, Pico session, Vienna, Austria, 24 April 2023 – 28 April 2023 (EGU23-15547)

2022

Mozaffari, A.; Schröder, S.; Romberg, M.; Epp, E.; Ahring, J.; Betancourt, C.; Leufen, L. H.; Kleinert, F.; Schultz, M. G.:
Advancing FAIRness for global air quality data analyses
Poster, International Data Week 2022, IDW2022, Seoul, South Korea, 20 Jun 2022 – 23 Jun 2022

Selke, N.; Leufen, L. H.; Mozaffari, A.; Schröder, S.; Schultz, M.:
Geodata enrichment for air quality
Poster, Living Planet Symposium 2022, LPS2022, Bonn, Germany, 23 May 2022 – 27 May 2022

Cooper, O.R.; Schröder, S.; Romberg, M.; Selke, N.; Leufen, L. H.; Ahring, J.; Mozaffari, A.; Schultz, M. G.:
TOAR-II Overview and Database
Presentation, Spring 2022 Meetings of the Task Force on Hemispheric Transport of Air Pollution, virtual, virtual, 17 May 2022 – 25 May 2022

Schröder, S.; Mozaffari, A.; Romberg, M.; Selke, N.; Leufen, L. H.; Ahring, J.; Schultz, M. G.:
TOAR-II data portal for global measurements of ozone and its precursors
Presentation, CEOS Atmospheric Composition Virtual Constellation AC-VC-18, virtual, Belgium, 14 Mar 2022 – 18 Mar 2022

2021

Schultz, M. G.:
Deep Learning for Weather Forecasting and Climate Prediction
AI4Good, AI4Good, virtual, Switzerland, 12 Jan 2022 – 12 Jan 2022

Kesselheim, S.; Herten, A.; Krajsek, K.; Ebert, J.; Jitsev, J.; Cherti, M.; Langguth, M.; Gong, B.; Stadtler, S.; Mozaffari, A.; Cavallaro, G.; Sedona, R.; Schug, A.; Strube, A.; Kamath, R.; Schultz, M. G.; Riedel, M.; Lippert, T.:
JUWELS Booster: A Supercomputer for Large-Scale AI Research
ISC High-Performance Conference Digital, Workshop “Deep Learning on Supercomputers”, 02 Jul, 2021 (accepted paper).

Selke, N.; Schröder, S.; Romberg, M.; Ahring, J.; Leufen, L. H.; Apweiler, S.; Schultz, M. G.:
The TOAR database: metadata harmonization and data quality assurance on global air quality data
EOSC Symposium 2021, virtual, virtual, 15 Jun 2021 – 18 Jun 2021

Schultz, M. G.:
Is bigger always better? Deep learning applications in air quality research
Invited talk, ISC High Performance 2021 Digital, Session “ML in Climate and Weather”, 29 Jun, 2021

Betancourt, C.; Stadtler, S.; Stomberg, T.; Edrich, A.-K.; Patnala, A.; Roscher, R.; Kowalski, J.; Schultz, M. G.:
Global fine resolution mapping of ozone metrics through explainable machine learning
vPICO presentation; European Geophysical Union General Assembly 2021, digital event, 19-30 Apr 2021

Kleinert, F.; Leufen, L. H.; Lupascu, A.; Butler, T.; Schultz, M. G.:
Representing chemical history for ozone time-series predictions – a method development study for deep learning models
vPICO presentation; European Geophysical Union General Assembly 2021, digital event, 19-30 Apr 2021

2020

Schröder, S.; Epp, E.; Leufen, L. H.; Mozaffari, A.; Romberg, M.; Schultz, M. G.; Sun, J.:
Tropospheric Ozone Assessment Report (TOAR) Data Infrastructure
WMO Data Conference, Virtual, 16 Nov 2020 – 19 Nov 2020

Betancourt, C.; Schröder, S.; Hagemeier, B.; Schultz, M. G.:
Performance analysis and optimization of a TByte-scale atmospheric observation database
European Geophysical Union Assembly 2020, online event, 04-08 May 2020

Gong, B.; Hußmann, S.; Mozaffari, A.; Vogelsang, J.; Schultz, M. G.:
Deep learning for short-term temperature forecasts with video prediction methods
European Geophysical Union Assembly 2020, online event, 04-08 May 2020

Kaffashzadeh, N.; Chang, K.L.; Schröder, S.; Schultz, M. G.:
A Statistical Model for Automated Quality Assessment of the TOAR-II
European Geophysical Union Assembly 2020, online event, 04-08 May 2020

Silva, B.; Kaffashzadeh, N.; Nixdorf, E.; Immoor, S.; Fischer, P.; Anselm, N.; Gerchow, P.; Schäfer, A.; Koppe, R.:
Automatic quality control and quality control schema in the Observation to Archive
European Geophysical Union Assembly 2020, online event, 04-08 May 2020

Mozaffari, A.; Schröder, S.; Apweiler, S.; Saini, R.; Hagemeier, B.; Schultz, M. G.:
FAIRness in the multi-services data infrastructure of the Tropospheric Ozone Assessment Report (TOAR) and Artificial Intelligence for Air Quality (IntelliAQ) project
Poster; RDA 15th Plenary Meeting, Melbourne, Australia and virtual, 18-20 Mar 2020

Schröder, S.; Mozaffari, A.; Apweiler, S.; Saini, R.; Hagemeier, B.; Schultz, M. G.:
FAIRness in the multi-service data infrastructure of the Tropospheric Ozone Assessment Report (TOAR) and Artificial Intelligence for Air Quality (IntelliAQ) project
Poster; RDA Germany Conference, Potsdam, Germany, 25-27 Feb 2020

Gong, B.; Vogelsang, J.; Mozaffari A.; Schultz, M. G.:
On the use of containers for machine learning and visualization workflows on JUWELS
Presentation, NIC Symposium 2020, Jülich, Germany, 27 Feb 2020 – 28 Feb 2020

2019

Schröder, S.; Apweiler, S.; Saini, R.; Hagemeier, B.; Schultz, M. G.:
Enhancing FAIRness of global air quality data: The Tropospheric Ozone Assessment Report database
Presentation; Book of Abstracts, page 360, GeoMünster conference, Münster, Germany, 22-25 Sept 2019

Schultz, M. G.:
IntelliAQ and DeepRain: Using Deep Learning Approaches in Weather and Air Quality Forecasts
Presentation; Workshop on Machine Learning in Weather and Climate Research, Oxford, UK, 02-05 Sept 2019

Gong, B.; Schultz, M. G.; Kleinert, F.:
Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques
Presentation, European Geophysical Union 2019, Wien, Austria, 7 Apr 2019 – 12 Apr 2019

Kleinert, F.; Gong, B.; Götz, M.; Schultz, M. G.:
Near Surface Ozone Predictions Based on Multiple Artificial Neural Network Architectures
Presentation, European Geophysical Union 2019, Wien, Austria, 7 Apr 2019 – 12 Apr 2019

Kaffashzadeh, N.; Schröder, S.; Schultz, M. G.:
A Novel Concept for Automated Quality Control of Atmospheric Time Series
Presentation, European Geophysical Union 2019, Wien, Austria, 7 Apr 2019 – 12 Apr 2019

Kaffashzadeh, N.;, Kleinert F.; Schultz M. G.:
A New Tool for Automated Quality Control of Environmental Time Series (AutoQC4Env) in Open Web Services
In: Abramowicz W., Corchuelo R. (eds) Business Information Systems Workshops. BIS 2019. Lecture Notes in Business Information Processing, vol 373. Springer, Cham., Dec 2019

2018

Schultz, M. G.; Apweiler, S.; Vogelsang, J.; Hagemeier, B.; Kleinert, F.; Mallmann, D.:
A Web Service Architecture for Objective Station Classification Purposes
14th International Conference on e-Science and Grid Computing, IEEE, Amsterdam, Netherlands, 29. October 2018 – 01. November 2018

Master and Doctoral Theses

Falco Weichselbaum
Deep Neural Network techniques for Weather Forecasting
Master thesis, Universtiy Bonn, 2022

Vincent Gramlich
Deep learning methods for forecasting of extreme ambient ozone values
Master thesis, University Cologne, 2021

Hußmann, S.
Deep Learning for Future Frame Prediction of Weather Maps
Master thesis, Humboldt University Berlin, 2019

Other

Schultz, M.G.:
How can we use AI to fight air pollution?
Open Access Government, July 2022, pp. 396-397

Schultz, M.G.; Kleinert, F.; Leufen, L.; Betancourt, C.; Schröder, S.; Gong, B.; Stadtler, S.; Langguth, M.; Mozaffari, A.:
Artificial intelligence for air quality
The Project Repository Journal (PRj), 12(1), 70 – 73 (2022).

Schultz, M.G.; Schröder, S.; Selke, N.; Epp, E.; Romberg, M.; Sun, J.; Ahring, J.; Mozaffari, A.; Lensing, M.; Betancourt, C.; Leufen, L.H.; Hagemeier, B.; Saini, R.:
TOAR-II Data Workshop
TOAR-II Manuscript Scoping Workshop, TOAR-II_2.02, virtual, Germany, 14 Nov 2021 – 16 Nov 2021

Gong, B.; Langguth, M.; Mozaffari, A ; Ji, Y ; Stadtler, S.; Mache, K.; Schultz, M. G.:
Near-surface temperature forecasting by deep learning
ML for Earth System Modelling and Analytics workshop 2021, online, Germany, 3 May 2021 – 4 May 2021